Interesting stuff about the amazing realm of the world ocean (along with any and all associated topics!).
Wednesday, September 25, 2013
National Estuaries Week
It's National Estuaries Week!!
Estuaries are vital for the health of the world ocean along with the health of US coastal waters. All of Chaminade's water sampling takes place in estuaries of varying size.
Link to National Estuaries Week:
http://oceanservice.noaa.gov/news/features/sep13/estuaries.html
Link to Nation Estuarine Research Reserve System (NERRS):
http://www.nerrs.noaa.gov/
NERRS Estuary Education:
http://estuaries.noaa.gov/
Friday, September 20, 2013
The Disappearing Arctic Ice
Researchers from WHOI (Woods Hole Oceanographic Institution) recently began an expedition to the Arctic Ocean
They want to one again try to study the Arctic Ocean and ecosystems as completely as possible.
Here's the latest post:
WHOI - Warming Arctic Expedition
Sunday, September 15, 2013
Where Are All of the Hurricanes?
Image Credit - NOAA Visualization Lab (Enhanced satellite of Sandy post-landfall)
In terms of hurricanes, it's been unusually quiet in the Atlantic Basin this year. The linked article from NOAA is telling us all to still be on guard.
As the article points out, one month (an August without a hurricane) does not a season make.
NOAA Article - Atlantic Hurricane Season 2013
Friday, September 13, 2013
Hurricane Research
Image Credit - NOAA Visualization Lab
We always hear lots about hurricanes this time of year in the eastern United States. Especially this year, since we're not even at the one year anniversary of Sandy. We also had to wait an extremely long time for the first Atlantic hurricane to form this year, Humberto, despite predictions from both NOAA and Colorado State.
If you've never used NOAA's online hurricane archive, it's fascinating. They have the tracks of over 150 years' worth of hurricane data. Fascinating.
NOAA just posted a small web article as a reminder to folks about its (the archive's) existence.
NOAA - Hurricane Archive
Friday, September 6, 2013
Isn't Ice Just Ice?
Or, to rephrase the title of this post, "Isn't all ice created equal?" No.
Depending on its environmental conditions and its solute, water can take on a variety of forms. Below is a great article from Chemical Heritage Magazine. Author credit: Sam Kean.
Wild Ice. By Sam Kean.
A story about ice might seem out of place in the summer issue of Chemical Heritage, but today we’re going to embrace that topsy-turviness. This is a story about bizarro ice—ice that burns, ice that sinks instead of floating, ice literally out of this world. So if you have a chilled drink at hand, take a gander at the cubes in your glass and let your imagination run because this is a side of ice you’ve never seen.
The common ice you find in ice cubes—called ice Ih, or “ice one-h”—is technically a mineral since it is inorganic and has a regular crystal structure. Specifically, its molecules arrange themselves into a lattice of tiny hexagons, a six-fold symmetry that ultimately underlies the shape of snowflakes. Virtually all ice on Earth is ice Ih, and a good thing too! Its spacious hexagons make it less dense than liquid water; so it floats on lakes and estuaries and actually insulates fragile aquatic creatures below, protecting them from wind and chill. Without ice Ih life as we know it wouldn’t exist.
But talking about ice and mentioning only ice Ih is like talking about chocolate and mentioning only Hershey’s. Exotic ices are still made up of H2O, of course, but the individual molecules break free from the hexagon straitjacket and reshuffle. Lots of solids can undergo a similar rearrangement. If you’ve ever opened an ancient Hershey’s kiss and found a tan and chalky cone inside the wrapper, you’ve seen chocolate do just that. (During this “chocolate bloom” the cocoa molecules squeeze together, increasing the chocolate’s density and pushing fat to the surface.) But few solids can form as many distinct “phases” as ice.
Scientists create different phases of ice by subjecting a tiny sample to monstrously high pressures, millions of times higher than atmospheric pressure. And with pressures so high the ice can stay solid at temperatures of thousands of degrees—a true freezer burn. If you could somehow plop chunks of these ices into a glass of liquid water, they’d vaporize it. (Imagine the party tricks.) On a molecular level the high pressure deforms the hexagonal bonds, forcing H2O molecules into rhombuses, tetragons, and other alternative geometries. High pressure can also force H2O molecules to squeeze into the holes at the centers of these shapes, trapping them like bugs in tiny cages. This action increases the density and makes these ices heavy enough to sink in water. At super-high pressures some chemists predict that ice transforms into a metal.
Scientists created the first exotic ices, ice II and ice III, around 1900; the list now extends up to ice XV, discovered in 2009. Creation of these ices is more than an academic exercise. Ice molecules are held together by the same hydrogen bonds that, among other things, hold DNA strands together; so forming new ices helps probe the nature of that bond. What’s more, while ice Ih dominates the biosphere, other ices exist naturally. An ice that’s structurally similar to diamonds, ice Ic, probably exists in the upper atmosphere. The dense, hot interiors of Neptune and Uranus probably contain chunks of nonhexagonal ices, as do exoplanets around distant stars, a potentially important consideration as we search for life beyond our solar system.
In the universe at large, however, ices I through XV are vastly outpopulated by so-called amorphous ice, ice whose molecules arrange themselves randomly, without any crystal structure. Amorphous ice forms in flash freezes in deep space. Microscopic nuggets of this ice also tend to look amorphous since there aren’t enough molecules to hold themselves together in a regular crystal.
That transition from amorphous ice to crystal ice has long intrigued scientists, and some of them have even tried to pin down exactly how many molecules are needed to form genuine crystal ice. That may seem like an unanswerable question—like asking at what point a man losing his hairs one by one becomes bald. But believe it or not, an experiment last fall in Germany actually determined the answer.
The experiment involved slowly adding H2O molecules to a nucleus of sodium atoms and probing what wavelengths of infrared light they absorbed. Amorphous ice showed an absorption peak at a certain wavelength; crystal ice had a peak at a slightly longer wavelength. The shift from one to the other occurred surprisingly quickly. Below 250 molecules the amorphous peak dominated. But at 275 molecules the crystal’s longer-wavelength peak began peeking out as a rudimentary crystal took shape. By 475 molecules that peak alone dominated. So depending on where you draw the line, as little as 0.000000000000000000008 grams of water “counts” as crystal ice.
That’s vastly smaller, of course, than even the rapidly shrinking slivers still left in your glass. They’ll nevertheless soon cross that threshold and wink out of existence. Midnight will chime, and all these fantasies of burning ice, ice that sinks, and metallic ice will evaporate. At least until ice chemists discover the next new wonderful incarnation.
Sam Kean is the best-selling author of The Violinist’s Thumb.
Depending on its environmental conditions and its solute, water can take on a variety of forms. Below is a great article from Chemical Heritage Magazine. Author credit: Sam Kean.
Wild Ice. By Sam Kean.
A story about ice might seem out of place in the summer issue of Chemical Heritage, but today we’re going to embrace that topsy-turviness. This is a story about bizarro ice—ice that burns, ice that sinks instead of floating, ice literally out of this world. So if you have a chilled drink at hand, take a gander at the cubes in your glass and let your imagination run because this is a side of ice you’ve never seen.
The common ice you find in ice cubes—called ice Ih, or “ice one-h”—is technically a mineral since it is inorganic and has a regular crystal structure. Specifically, its molecules arrange themselves into a lattice of tiny hexagons, a six-fold symmetry that ultimately underlies the shape of snowflakes. Virtually all ice on Earth is ice Ih, and a good thing too! Its spacious hexagons make it less dense than liquid water; so it floats on lakes and estuaries and actually insulates fragile aquatic creatures below, protecting them from wind and chill. Without ice Ih life as we know it wouldn’t exist.
But talking about ice and mentioning only ice Ih is like talking about chocolate and mentioning only Hershey’s. Exotic ices are still made up of H2O, of course, but the individual molecules break free from the hexagon straitjacket and reshuffle. Lots of solids can undergo a similar rearrangement. If you’ve ever opened an ancient Hershey’s kiss and found a tan and chalky cone inside the wrapper, you’ve seen chocolate do just that. (During this “chocolate bloom” the cocoa molecules squeeze together, increasing the chocolate’s density and pushing fat to the surface.) But few solids can form as many distinct “phases” as ice.
Scientists create different phases of ice by subjecting a tiny sample to monstrously high pressures, millions of times higher than atmospheric pressure. And with pressures so high the ice can stay solid at temperatures of thousands of degrees—a true freezer burn. If you could somehow plop chunks of these ices into a glass of liquid water, they’d vaporize it. (Imagine the party tricks.) On a molecular level the high pressure deforms the hexagonal bonds, forcing H2O molecules into rhombuses, tetragons, and other alternative geometries. High pressure can also force H2O molecules to squeeze into the holes at the centers of these shapes, trapping them like bugs in tiny cages. This action increases the density and makes these ices heavy enough to sink in water. At super-high pressures some chemists predict that ice transforms into a metal.
Scientists created the first exotic ices, ice II and ice III, around 1900; the list now extends up to ice XV, discovered in 2009. Creation of these ices is more than an academic exercise. Ice molecules are held together by the same hydrogen bonds that, among other things, hold DNA strands together; so forming new ices helps probe the nature of that bond. What’s more, while ice Ih dominates the biosphere, other ices exist naturally. An ice that’s structurally similar to diamonds, ice Ic, probably exists in the upper atmosphere. The dense, hot interiors of Neptune and Uranus probably contain chunks of nonhexagonal ices, as do exoplanets around distant stars, a potentially important consideration as we search for life beyond our solar system.
In the universe at large, however, ices I through XV are vastly outpopulated by so-called amorphous ice, ice whose molecules arrange themselves randomly, without any crystal structure. Amorphous ice forms in flash freezes in deep space. Microscopic nuggets of this ice also tend to look amorphous since there aren’t enough molecules to hold themselves together in a regular crystal.
That transition from amorphous ice to crystal ice has long intrigued scientists, and some of them have even tried to pin down exactly how many molecules are needed to form genuine crystal ice. That may seem like an unanswerable question—like asking at what point a man losing his hairs one by one becomes bald. But believe it or not, an experiment last fall in Germany actually determined the answer.
The experiment involved slowly adding H2O molecules to a nucleus of sodium atoms and probing what wavelengths of infrared light they absorbed. Amorphous ice showed an absorption peak at a certain wavelength; crystal ice had a peak at a slightly longer wavelength. The shift from one to the other occurred surprisingly quickly. Below 250 molecules the amorphous peak dominated. But at 275 molecules the crystal’s longer-wavelength peak began peeking out as a rudimentary crystal took shape. By 475 molecules that peak alone dominated. So depending on where you draw the line, as little as 0.000000000000000000008 grams of water “counts” as crystal ice.
That’s vastly smaller, of course, than even the rapidly shrinking slivers still left in your glass. They’ll nevertheless soon cross that threshold and wink out of existence. Midnight will chime, and all these fantasies of burning ice, ice that sinks, and metallic ice will evaporate. At least until ice chemists discover the next new wonderful incarnation.
Sam Kean is the best-selling author of The Violinist’s Thumb.
Wednesday, September 4, 2013
Post Fukushima Daiichi Japan
One area of Japan is still reeling from the triple disaster of 2011 - Great Tohoku Earthquake, its resulting tsunami, and the ongoing nuclear disaster at the crippled Fukushima Daiichi power plant run by TEPCO. Radiation still leaks from the plant due to the abundant groundwater in the area. Both the Japanese government and TEPCO appear increasingly unable to deal with such a complex situation at the wrecked power plant.
Neighboring countries grow increasingly concerned over contaminated water making its way into the Pacific Ocean.
Image Credit: ASR
Click to the superb linked article and related slide show at the NY Times.
NY Times - Fukushima Daiichi Cleanup Article
Neighboring countries grow increasingly concerned over contaminated water making its way into the Pacific Ocean.
Image Credit: ASR
Click to the superb linked article and related slide show at the NY Times.
NY Times - Fukushima Daiichi Cleanup Article
Subscribe to:
Posts (Atom)