Tuesday, May 31, 2011

Whale Sharks

Fascinating article from ScienceDaily.com.


Scientists Discover the Largest Assembly of Whale Sharks Ever Recorded

ScienceDaily (May 30, 2011) — Whale sharks (Rhincodon typus) are often thought to be solitary behemoths that live and feed in the open ocean. Scientists at the Smithsonian Institution and colleagues, however, have found that this is not necessarily the case, finding that whale sharks can be gregarious and amass in the hundreds to feed in coastal waters.
Aggregations, or schools, of whale sharks have been witnessed in the past, ranging from several individual sharks to a few dozen. However this new research, which involved both surface and aerial surveys, has revealed an enormous aggregation of whale sharks -- the largest ever reported -- with up to 420 individuals off the coast of the Yucatán Peninsula in Mexico. What brings them together is food.
"Whale sharks are the largest species of fish in the world, yet they mostly feed on the smallest organisms in the ocean, such as zooplankton," said Mike Maslanka, biologist at the Smithsonian Conservation Biology Institute and head of the Department of Nutrition Sciences. "Our research revealed that in this case, the hundreds of whale sharks had gathered to feed on dense patches of fish eggs."
While whale sharks may seem conspicuous as the heaviest and longest of all fishes, growing more than 40 feet long, there is still much that is unknown about them. They have a very widespread distribution, occurring in all tropical and sub-tropical regions of the ocean around the world. Understanding this filter-feeder's diet is especially important since food sources determine much of the whale shark's movement and location.
During the dozens of surface trips that team members made to the aggregation, called the "Afuera" aggregation, they used fine nets to collect food samples inside and immediately outside the school of feeding whale sharks. Scientists then used DNA barcoding analysis to examine the collected fish eggs and determine the species. They found that the eggs were from little tunny (Euthynnus alletteratus), a member of the mackerel family.
"Having DNA barcoding is an incredibly valuable resource for this research," said Lee Weigt, head of the Laboratories of Analytical Biology at the Smithsonian's National Museum of Natural History. "It not only allowed us to know what exactly this huge aggregation of whale sharks were feeding on, not readily done from only physical observations of eggs, but it also revealed a previously unknown spawning ground for little tunny."
The team of scientists also examined a nearby, less dense aggregation of whale sharks, known as the Cabo Catoche aggregation, off the northern tip of the Yucatán Peninsula. They found that the prey of this group mostly consisted of copepods (small crustaceans) and shrimp. Increased sightings at Afuera coincided with decreased sightings at Cabo Catoche, and both groups had the same sex ratio, implying that the same animals were involved in both aggregations.
"With two significant whale shark aggregation areas and at the very least one active spawning ground for little tunny, the northeastern Yucatán marine region is a critical habitat that deserves more concerted conservation effort," said Maslanka.
The whale shark is listed as "vulnerable" with the International Union for Conservation of Nature and Natural Resources. Populations appear to have been depleted by harpoon fisheries in Southeast Asia and perhaps incidental capture in other fisheries.
The scientists' findings were published in the scientific journalPLoS ONE, April 2011. In addition to the Smithsonian Institution, team members were from the Comisión Nacional de Áreas Naturales Protegidas in Cancún, Mexico, the Center for Shark Research in Sarasota, Fl., project DOMINO and the Georgia Aquarium, Inc. in Atlanta, Ga.
Email or share this story:

Sunday, May 22, 2011

Highlighting the Importance of Wetlands

Check out this excellent article from NOAA on the importance of preserving existing and creating new wetlands.  The article references the current historic flooding on the lower Mississippi River.  The implications can obviously be extended to the coastal marine environment.

Here's the link.http://www.habitat.noaa.gov/protection/wetlands/mississippi_river_flooding.html

Enjoy.

Wednesday, May 18, 2011

Mass Extictions and Evolution


The following article from ScienceDaily.com sheds some light on extinctions, evolution, and sediments.

Mass Extinction of Marine Life in Oceans During Prehistoric Times Offers Warning for Future

ScienceDaily (May 17, 2011) — The mass extinction of marine life in our oceans during prehistoric times is a warning that the same could happen again due to high levels of greenhouse gases, according to new research.
Professor Martin Kennedy from the University of Adelaide (School of Earth & Environmental Sciences) and Professor Thomas Wagner from Newcastle University, UK, (Civil Engineering and Geosciences) have been studying 'greenhouse oceans' -- those that have been depleted of oxygen, suffering increases in carbon dioxide and temperature.
Using core samples drilled from the ocean bed off the coast of western Africa, the geologists studied layers of sediment from the Late Cretaceous Period (85 million years ago) across a 400,000-year timespan. They found a significant amount of organic material -- marine life -- buried within deoxygenated layers of the sediment.
Professor Wagner says the results of their research, published in theProceedings of the National Academy of Sciences (PNAS), has relevance for our modern world: "We know that 'dead zones' are rapidly growing in size and number in seas and oceans across the globe," he said. "These are areas of water that are lacking in oxygen and are suffering from increases of CO2, rising temperatures, nutrient run-off from agriculture and other factors."
Their research points to a mass mortality in the oceans at a time when Earth was going through a greenhouse effect. High levels of carbon dioxide in the atmosphere and rising temperatures led to a severe lack of oxygen (hypoxia) in the water that marine animals depend upon.
"What's alarming to us as scientists is that there were only very slight natural changes that resulted in the onset of hypoxia in the deep ocean," said Professor Kennedy. "This occurred relatively rapidly -- in periods of hundreds of years, or possibly even less -- not gradually over longer, geological time scales, suggesting that Earth's oceans are in a much more delicate balance during greenhouse conditions than originally thought, and may respond in a more abrupt fashion to even subtle changes in temperature and CO2 levels."
Professor Kennedy said that the doubling of the amount of carbon dioxide in our atmosphere over the past 50 years is "like hitting our ecosystem with a sledge-hammer" compared to the very small changes in incoming solar energy (radiation) which was capable of triggering these events in the past.
"This could have a catastrophic, profound impact on the sustainability of life in our oceans, which in turn is likely to impact on the sustainability of life for many land-based species, including humankind," he added.
However, the geological record offers a glimmer of hope thanks to a naturally occurring response to greenhouse conditions. After a hypoxic phase, oxygen concentration in the ocean seems to improve, and marine life returns.
This research has shown that natural processes of carbon burial kick in and the land comes to the rescue, with soil-formed minerals collecting and burying excess dissolved organic matter in seawater. Burial of the excess carbon ultimately contributes to CO2 removal from the atmosphere, cooling the planet and the ocean.
"This is nature's solution to the greenhouse effect and it could offer a possible solution for us," said Professor Wagner. "If we are able to learn more about this effect and its feedbacks, we may be able to manage it, and reduce the present rate of warming threatening our oceans."
Email or share this story: